GO语言泛型编程实践

幸运草
幸运草
幸运草
896
文章
3
评论
2020年4月16日20:51:23 评论 120

紧接着上次说到的RDB文件解析功能,数据解析步骤完成后,下一个问题就是如何保存解析出来的数据,Redis有多种数据类型,string、hash、list、zset、set,一开始想到的方案是为每一种数据定义一种数据结构,根据不同的数据类型,将数据保存到不同的数据结构,但是这样的做法带来了比较多的冗余代码,以string和hash为例,一开始的代码是这样的:

type Rdb struct {
    … // 其他属性
    strObj         map[string]string
    hashObj     map[string]map[string]string
    …// 其他结构体定义
}

// 保存string的函数
func (r *Rdb) saveStrObj(redisKey string, redisVal string) {
    r.strObj[redisKey] = redisVal
}

// 保存hash的函数
func (r *Rdb) saveHashObj(redisKey string, hashField string, hashVal string) {
    item, ok := r.hashObj[redisKey]

    if !ok {
        item = make(map[string]string)
        r.hashObj[redisKey] = item
    }

    item[hashField] = hashVal
}

这种方式有比较多的冗余代码,比如保存字符串和保存哈希结构需要编写两套相似代码了,且在初始化Rdb结构体的时候,还需要初始化所有结构体之后,再传递到Rdb的初始化函数中,比如:

strObj := make(map[string]string)
hashObj := make(map[string]map[string]string)
rdb := &Rdb{…, strObj, hashObj}

这样的代码写起来比较繁琐,且不好维护,如果在更多数据类型的项目中,这样的代码看起来简直令人发指。比如在这次的实践中,redis的数据都是键值对,键的类型是固定的-字符串,但是值的类型就有map、string等等各种类型,于是乎就想到是否有泛型这种技术可以协助实现想要的功能。

泛型编程

泛型程序设计(generic programming)是程序设计语言的一种风格或范式。泛型允许程序员在强类型程序设计语言中编写代码时使用一些以后才指定的类型,在实例化时作为参数指明这些类型。(摘自维基百科)

简单地理解,泛型编程指的是不针对某一种特定的类型进行编程,一个方法不是针对了某几种特定的数据类型,而是对大部分数据类型都有效。

比如开发一个加法功能,不只是支持整型做加法,浮点型、字符串、数组等等类型的加法,都可以实现。

在开始介绍Go语言的泛型编程实现之前,我想先聊一聊C语言的泛型实现,还是那句话,最喜欢C语言。

C语言的泛型实现

以交换变量的函数为例子,在C语言的实现,是通过无类型指针void *来实现,看下面的代码:

// 交换函数,泛型实现版本
void swap(void *p1, void *p2)
{
        size_t size = (sizeof(p1) == sizeof(p2)) ? sizeof(p1) : -1;
        char temp[size];
        memcpy(temp, p1, sizeof(p1));
        memcpy(p1, p2, sizeof(p2));
        memcpy(p2, temp, sizeof(temp));
}

那么,有了泛型版本的交换函数后,通过执行整型、浮点数和字符串的交换验证一下:

int main()
{
    int a = 1;
    int b = 42767;
    swap(&a, &b);

    float f1 = 1.234;
    float f2 = 2.345;
    swap(&f1, &f2);

    char str1[6] = "hello";
    char str2[10] = "world ooo";
    swap(str1, str2);

    printf("a: %d, b: %dn", a, b);
    printf("f1: %f, f2: %fn", f1, f2);
    printf("str1: %s, str2: %sn", str1, str2);
}

编译执行后结果如下:

GO语言泛型编程实践

泛型版本的交换函数实现的关键是void *和memcpy函数,是拷贝内存的操作,因为数据在内存中都是保存二进制,只要操作交换的类型是一致的,那么通过memcpy会拷贝类型占用字节大小的数据,从而实现同类型的数据交换。需要注意一点的是,C语言下的泛型编程是不安全的,比如在这个交换函数中,如果操作了不同类型数据的交换,比如short和int的交换:

short a = 1;
int b = 5;
swap(&a, &b);

这个调用时不会报错,且可运行的,但是交换的结果依赖于系统的字节序,这种交换是没有意义的,需要程序员去做更多的检查和特殊判断。

Go语言的泛型

在Go语言里面,没有真正的泛型,它的泛型是通过利用interface{}的特性来实现,因为interface{}也是一种类型, 只要实现了interface{}里面的方法就可以归属为同一种类型,空的interface{}没有任何方法,那么任何类型都可以作为同一类(这一点有点类似Java的Object,所有类的超类)。

interface{}

interface{}是Go语言的一种类型,可以类比理解为Java的接口类型,在Go语言里,interface{}定义了一个方法集合,只要实现了interface{}里面的方法集,那就可以说是实现了该接口。Go语言的interface{}类型是一种静态的数据类型,在编译时会检查,但是它也算是一种动态的数据类型,因为它可以用来保存多种类型的数据。

Go语言的interface{}提供了一种鸭子类型(duck typing)的用法,用起来就好像是PHP中的动态数据类型一样,但是如果企图使用一个有其他方法声明的interface{}来保存int,编译器还是会报错的。

以开头的代码为例,改为使用interface{}后,代码是怎么样呢?

定义保持Redis对象的RedisObject结构体,保存对象的类型、占用长度,对象值,值使用了空interface{}类型:

type RedisObject struct {
    objType int
    objLen  int
    objVal  interface{}
}

当保存值时,只需要将值直接赋值给RedisObject即可:

func (r *Rdb) saveStrObj(redisKey string, strVal string) {
    redisObj := NewRedisObject(RDB_TYPE_STRING, r.loadingLen, strVal)
    r.mapObj[redisKey] = redisObj
}

func (r *Rdb) saveHash(hashKey string, hashField string, hashValue string) {
    item, ok := r.mapObj[hashKey]
    if !ok {
        tmpMap := make(map[string]string)
        item = NewRedisObject(RDB_TYPE_HASH, 0, tmpMap)
        r.mapObj[hashKey] = item
    }

    item.objVal.(map[string]string)[hashField] = hashValue
}

对于字符串类型而言,它的值就是简单的字符串,使用语句r.mapObj[redisKey] = redisObj赋值即可,而哈希对象相对复杂一些,首先检查保存键hashKey的是否为有效对象,如果不是,则需要新建一个哈希对象,在保存时,需要将objVal(interface{}类型)解析为键值对对象,然后再进行赋值,具体代码是objVal.(map[string]string),意思是将类型为interface{}的objVal解析为map[string][string]类型的值。

类型断言

上面对objVal进行类型转换的技术称之为类型断言,是一种类型之间转换的技术,与类型转换不同的是,类型断言是在接口间进行。

语法

<目标类型的值>,<布尔参数> := <表达式>.( 目标类型 ) // 安全类型断言
<目标类型的值> := <表达式>.( 目标类型 )  //非安全类型断言

如果断言失败,会导致panic的发生,为了防止过多的panic,需要在断言之前进行一定的判断,这就是安全与非安全断言的区别,安全类型断言可以获得布尔值来判断断言是否成功。

另外,也可以通过t.(type)得到变量的具体类型。

var t interface{}
t = functionOfSomeType()
switch t := t.(type) {
    default:
        fmt.Printf("unexpected type %T", t)       // %T prints whatever type t has
    case bool:
        fmt.Printf("boolean %tn", t)             // t has type bool
    case int:
        fmt.Printf("integer %dn", t)             // t has type int
    case *bool:
        fmt.Printf("pointer to boolean %tn", *t) // t has type *bool
    case *int:
        fmt.Printf("pointer to integer %dn", *t) // t has type *int
}

总结

通过这次的小实践,除了对泛型编程有了更多的了解,学习到了Go语言的泛型编程原理,认识到interface{}也算是Go语言中的一个亮点,同时对计算机底层操作数据的本质也有所了解,程序的数据是在底层是一堆二进制,解析数据不是去识别数据的类型,而是程序根据变量的类型读取对应的字节,然后采取不同的方式去解析它。所谓类型, 只是读取内存的方式不同罢了。

特别声明:以上文章内容仅代表作者本人观点,不代表变化吧观点或立场。如有关于作品内容、版权或其它问题请于作品发表后的30日内与变化吧联系。

转载请注明:{{title}}-变化吧
  • 赞助本站
  • 微信扫一扫
  • weinxin
  • 赞助本站
  • 支付宝扫一扫
  • weinxin
幸运草
Go语言接口规则 前端框架

Go语言接口规则

Go语言接口规则 接口是一个或多个方法签名的集合。任何类型的方法集中只要拥有该接口对应的全部方法签名。就表示它 "实现" 了该接口,无须在该类型上显式声明实现了哪个接口。对应方法,是指有相同名称、参数列表 (不包括参数名) 以及返回值,该类型也可以有其他方法。 接口赋值 对象赋值给接口时,会发生拷贝,而接口内部存储的是指向这个复制品的指针,既无法修改复制品的状态,也无法获取指针。 package main import "fmt" type User struct {     id   int     name string } func main() {     u := User{18, "oldboy"}     var i interface{} = u     u.id = 20     u.name = "Golang"     fmt.Printf("u : %vn", u)     fmt.Printf("i.(User) : %vn", i.(User)) } 运行结果: u : {20 Golang} i.(User) : {18 oldboy} 接口转型返回临时对象,只有使用指针才能修改其状态。 package main import "fmt" type User struct {     id   int     name string } func main() {     u := User{18, "oldboy"}     var vi, pi interface{} = u, &u     // vi.(User).name = "Golang"     pi.(*User).name = "Golang"     fmt.Printf("vi.(User) : %vn", vi.(User))     fmt.Printf("pi.(*User) : %vn", pi.(*User)) } 空接口 只有当接口存储的类型和对象都为nil时,接口才等于nil。 package main import (     "fmt" ) func main() {     var i interface{}     fmt.Printf("i => %vn", i)     fmt.Printf("(i == nil) => %vn", i == nil)     var p *int = nil     // i 指向 p,指向的对象是个nil,但是存在类型不是nil,是个指针     i = p     fmt.Printf("i => %vn", i)     fmt.Printf("(i == nil) => %vn", i == nil) } 运行结果: i => <nil> (i == nil) => true i => <nil> (i == nil) => false 接口实现 接口只有方法声明,没有数据字段,没有实现,也不需要显示的实现。只要一个变量,含有接口类型中的所有方法,那么这个变量就实现这个接口。 package main import (     "fmt" ) type Info interface {     GetAge() int     GetName() string } type User struct {     name string     age  int } func (u User) GetAge() int {     return u.age } func (u User) GetName() string {     return u.name } func main() {     var user Info = User{"oldboy", 18}     age := user.GetAge()     name := user.GetName()     fmt.Println(age, name) } 如果一个变量含有了多个interface类型的方法,那么这个变量就实现了多个接口。 package main import (     "fmt" ) type Age interface {     GetAge() int } type Name interface {     GetName() int } type User struct {     name string...
Go语言中处理 HTTP 服务器 前端框架

Go语言中处理 HTTP 服务器

1 概述 包 net/http 提供了HTTP服务器端和客户端的实现。本文说明关于服务器端的部分。 快速开始: package main import (   "log"   "net/http" ) func main() {   // 设置 路由   http.HandleFunc("/", IndexAction)   // 开启监听   log.Fatal(http.ListenAndServe(":8888", nil)) } func IndexAction(w http.ResponseWriter, r *http.Request) {  w.Write(byte(`<h1 align="center">来自变化吧的问候</h1>`)) } 运行程序,在浏览器上请求: localhost:8888,你会看到我们的结果 Go语言构建HTTP服务器还是很容易的。深入说明。 2 http.Server 类型 HTTP 服务器在 Go 语言中是由 http.Server 结构体对象实现的。参考 http.ListenAndServe() 的实现: // 文件:src/net/http/server.go // ListenAndServe always returns a non-nil error. func ListenAndServe(addr string, handler Handler) error {   server := &Server{Addr: addr, Handler: handler}   return server.ListenAndServe() } 可见过程是先实例化 Server 对象,再完成 ListenAndServe 。其中 Serve 对象就是表示 HTTP 服务器的对象。其结构如下 : // 文件:src/net/http/server.go type Server struct {   Addr    string  // TCP 监听地址, 留空为:":http"   Handler Handler // 调用的 handler(路由处理器), 设为 nil 表示 http.DefaultServeMux   TLSConfig *tls.Config // TLS 配置对象   ReadTimeout time.Duration // 请求超时时长   ReadHeaderTimeout time.Duration // 请求头超时时长   WriteTimeout time.Duration // 响应超时时长   IdleTimeout time.Duration // 请求空闲时长(keep-alive下两个请求间)   MaxHeaderBytes int // 请求头的最大长度   TLSNextProto mapfunc(*Server, *tls.Conn, Handler) // NPN 型协议升级出现时接管TLS连接的处理器函数映射表   ConnState func(net.Conn, ConnState) // 状态转换事件处理器   ErrorLog *log.Logger // 日志记录对象   disableKeepAlives int32     // accessed atomically.   inShutdown        int32     // accessed atomically (non-zero means we're in Shutdown)   nextProtoOnce     sync.Once // guards setupHTTP2_* init   nextProtoErr      error     // result of http2.ConfigureServer if used   mu         sync.Mutex   listeners  mapstruct{}   activeConn mapstruct{}   doneChan   chan struct{}   onShutdown func() } 可见 Server 定义了服务器需要的信息。 实例化了 Server 对象后,调用其 (srv *Server) ListenAndServe() error 方法。该方法会监听 srv.Addr 指定的 TCP 地址,并通过 (srv *Server) Serve(l net.Listener) error 方法接收浏览器端连接请求。Serve 方法会接收监听器 l 收到的每一个连接,并为每一个连接创建一个新的服务进程。 该 go...
go语言动态库的编译和使用 前端框架

go语言动态库的编译和使用

本文主要介绍go语言动态库的编译和使用方法,以linux平台为例,windows平台步骤一样,具体环境如下: $ echo $GOPATH /media/sf_share/git/go_practice $ echo $GOROOT /usr/lib/golang/ $ tree $GOPATH/src /media/sf_share/git/go_practice/src |-- demo |   `-- demo.go `-- main.go 1 directory, 2 files 在$GOPATH/src目录,有demo包和使用demo包的应用程序main.go,main.go代码如下: package main import "demo" func main() {    demo.Demo() } demo包中的demo.go代码如下: package demo import "fmt" func Demo() {    fmt.Println("call demo ...") } 由于demo.go是$GOPATH/src目录下的一个包,main.go在import该包后,可以直接使用,运行main.go: $ go run main.go call demo ... 现在,需要将demo.go编译成动态库libdemo.so,让main.go以动态库方式编译,详细步骤如下: 1 将go语言标准库编译成动态库 $ go install -buildmode=shared -linkshared  std 在命令行运行go install -buildmode=shared -linkshared  std命令,-buildmode指定编译模式为共享模式,-linkshared表示链接动态库,成功编译后会在$GOROOT目录下生标准库的动态库文件libstd.so,一般位于$GOROOT/pkg/linux_amd64_dynlink目录: $ cd $GOROOT/pkg/linux_amd64_dynlink $ ls libstd.so libstd.so 2 将demo.go编译成动态库 $ go install  -buildmode=shared -linkshared demo $ cd $GOPATH/pkg $ ls linux_amd64_dynlink/ demo.a  demo.shlibname  libdemo.so 成功编译后会在$GOPATH/pkg目录生成相应的动态库libdemo.so。 3 以动态库方式编译main.go $ go...
go语言 - Scheduler原理以及查看Goroutine执行 前端框架

go语言 - Scheduler原理以及查看Goroutine执行

最近看了看go scheduler的基本原理,本文介绍go语言scheduler的基本原理以及如何查看go代码中的go routine的执行情况。 0)Scheduler(调度器) 熟悉go语言的小伙伴应该都使用过goroutine。goroutine就是Go语言提供的一种用户态线程。Scheduler是调度goroutine的调度器。 Go的调度器内部有三个重要概念:M,P,G。 M (machine): 代表真正的内核操作系统里面的线程,和POSIX里的thread差不多,也是真正执行goroutine逻辑的部分。 G (Goroutine): 代表一个goroutine。 P (Processor): 代表调度的上下文,可以理解成一个局部调度器。 Go语言实现了多个Goroutine到多个Processor的映射(调度)。注意的是,针对X个Processor,Scheduler可能创建多于X个M(有些M可能会暂时被block)。还需要理解额外两个概念:GRQ(Global Running Queue)以及 LRQ(Local Running Queue)。未指定Processor的Goroutine会存放在GRQ上,在调度到合适的Processor后,会将一个Goroutine从GRQ移动到LRQ。 Go程序中发生了四类事件,允许调程序做出调度决策。 a. 使用关键字go b. 垃圾收集 c. 系统调用 d. 同步 1)Processor的个数 Processor的个数可以通过GOMAXPROCS环境变量设置。GOMAXPROCS默认值是CPU的核数。Processor的个数可以通过如下的go代码进行查询: package main import ( "fmt" "runtime" ) func main() { // NumCPU returns the number of logical // CPUs usable by the current process. fmt.Println(runtime.NumCPU()) } 也就是通过runtime.NumCPU函数可以获得Processor的个数。查看go语言的源代码(runtime/os_linux.c),NumCPU函数的实现函数如下:  func getproccount() int32 { const maxCPUs = 64 * 1024 var buf byte r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf) if r < 0 { return 1 } n := int32(0) for _, v := range buf { for v != 0 { n += int32(v...